HUMAN MILK FOR PRETERM INFANTS: ONE SIZE FITS ALL?

Jatinder Bhatia, MD, FAAP

Professor and Chief

Division of Neonatology

Vice Chair, Clinical Research

Department of Pediatrics

Chair, Augusta University Medical Associates

Augusta University

Augusta, GA, USA

Florida Neonatal Neurologic Network, 2017

Disclosures

Consultant: Nestle

Grant Support: Sigma Tau, Chiesi, Duke [NIH]

Objectives

- Scope of the problem
- Rationale for aggressive nutrition
- Benefits of human milk
- Limitations of human milk
- Fortification of human milk
- Outcomes of interest

Introduction

- Rate of prematurity still high in the United States
- Increasing survival of very low birth weight infants
- Overriding attention to cardio-respiratory problems
- "Adjunctive" needs often not addressed: nutrition

CDC Data, NCHS 2014

Infants born less than 2500g: 318,847

Percent LBW: 8.00

Percent VLBW: 1.40

9.57 Percent preterm:

Low Birthweight

- Important public health indicator
- Not a proxy for maternal or perinatal health outcomes
- Globally, it is measure of long-term maternal malnutrition, ill health, poor pregnancy health care
- Low birth weight may not be the best indicator and a broader definition of the outcome of pregnancy outcome is needed
- Cut-off of 2500g may not be appropriate in all settings: for e.g., in some countries with a high incidence of low birth weight do not have high mortality rates [Sri Lanka]

Pathmanathan et al., Health, Nutrition, and Population Series, World Bank, Washington, DC 2003

Intergenerational cycle of growth failure

Ramakrishnan U Am J Clin Nutr 2004;79:17-21

©2004 by American Society for Nutrition

Goals and Requirements

- Optimal nutritional goal is to duplicate normal in utero fetal growth rates
- Should have no negative impact on growth and development
- Achieve maximal appropriate growth without adverse effects
- In reality, extrauterine growth restriction is almost universal in small premature infants
- Growth restriction or failure associated with adverse outcomes: neurocognitive effects and chronic lung disease
- Accelerated growth associated with insulin resistance, cardiovascular disease

AAP 2008; Ehrenkranz et al., 1999; Morley et al., 1999; Singhal et al., 2003; Singhal, Cole and Lucas 2001; Singhal et al., 2004

Rationale for aggressive nutrition

Last Trimester

Active amino acid transport

Calcium, Phosphorus, Magnesium, Iron, Lipid transfer present; DHA transported

Glucose, facilitated diffusion

Delivery of premature infant

Higher energy expenditure
Inadequate protein and energy
intake

Lipid and glucose *exceed* in utero Amino acid *lower* than in utero

Negative Nitrogen Balance

Extremely Low Birth Weight Infants Grow Poorly

Postmenstrual Age (Weeks)
Average body weight compared to intrauterine growth

Ehrenkranz, Pediatrics, 1999

Average GV for infants weighing 501 to 1500 g, 2000 to 2013.

Jeffrey D. Horbar et al. Pediatrics 2015;136:e84-e92

©2015 by American Academy of Pediatrics

Percentage of infants weighing 501 to 1500 g who were discharged below the third or 10th percentiles of the Fenton growth chart, 2000 to 2013.

Jeffrey D. Horbar et al. Pediatrics 2015;136:e84-e92

©2015 by American Academy of Pediatrics

Weight gain patterns 23-25 weeks

Fenton et al., BMC Pediatrics 2013, 13:92

Growth Quartiles and Outcomes

Ehrenkranz et al., Pediatrics 2006

Human Milk and the Premature Infant

- Late onset sepsis
- Necrotizing enterocolitis
- Neurocognitive adverse outcomes
 - ?VLBW infants
- Retinopathy of Prematurity
- ?Bronchopulmonary dysplasia
- Feeding intolerance
- Metabolic syndrome
- Insulin resistance
- Lower blood pressure and lower low-density lipoproteins

Arch Dis Child Fetal Neonatal Ed 2007; Cochrane Database Syst Rev 2007; Pediatrics 2012; JPGN 2003; Pediatrics 2005; Cohrane Database Syst Rev 2007; J Maternal Fetal Neonatal Med 2010; Nutr J 2014

Figure 2: Beneficial Effects of Human Milk Oligosaccharides on Neonatal Intestinal Development

From: Prebiotics in Infant Nutrition, Donovan, Gibson, Newburg; meadjohnson.com/pediatrics/US../LB2329 [Donovan, J Pediatrics, 2006]

Limitations of Human Milk

- Nutrients
 - Protein, energy, calcium, phosphorus, iron, vitamins, sodium, zinc
- Supply
 - Reduced supply, maternal stress, biological
- Delivery
 - Restriction of volumes
 - Inappropriate fortification [donor or mothers own milk]

Nutrient Recommendations

Nutrient	Koletzko ¹	ESPGHAN ²
Fluid, mL/kg/day	135-200	135-200
Energy, Kcal/kg/day	110-135	110-135
Protein, g/kg/day	3.5 -4.5	4-4.5 (<1 kg) 3.5-4 (1-1.8 kg)
Lipids, g/kg/day	4.8-6.6	4.8-6.6 (<40% MCT)
Calcium, mg/kg/day	120-200	120-140
Phosphate, mg/kg/day	60-140	60-90
Vitamin D, IU/day	400-1000	800-1000

MCT=medium-chain triglyceride.

- 1. Koletzko B, et al. World Rev Nutr Diet. Basel: Karger. 2014;110:297-299.
- 2. Agostoni C, et al. J Pediatr Gastroenterol Nutr. 2010;50:85-91.

Growth Expectations

	500-700g	700-900g	900-1200g	1200-1500g
g/kg/d, fetal	21	20	19	18
g/kg/d, protein intake	4.0	4.0	4.0	3.9
Kcal/kg/d, energy intake	105	118	119	127

Ziegler 2011

Macronutrient Composition

	Protein, g/dL (mean)	Energy, kcal/dL (mean)
Term milk	0.9-1.5 (1.2)	57-83 (70)
Donor milk	0.6-1.4 (0.9)	50-115 (67)
Preterm milk, <29 wks	1.3-3.3 (2.2)	61-94 (78)
Preterm milk, 32-33 wks	1.3-2.5 (1.9)	64-89 (77)
Preterm, donor milk	0.8-1.9 (1.4)	53-87 (70)

Ballard O, Morrow AL. Pediatr Clin North Am. 2013;60:49-74.

Feeding Practices

- Colostrum swabbing
- Human Milk, mother's preferred
- Donor human milk
- **Fortify**
- Caution in abrupt cessation of amino acids
- Ideal fortification would be analysis + modular fortification

Fortification

- Protein content of human milk declines with duration of lactation
- Routine fortification and a low protein intake from human milk is the main cause of postnatal growth restriction
- Problem is worsened with donor human milk
- Strategies to improve nutritional status
 - Measure protein concentration and target fortification
 - Fortify based on BUN [in the absence of renal dysfunction, BUN is a sensitive indicator of protein sufficiency]
 - Blind fortification

Fortifiers Available

- Powder human milk fortifiers
- Liquid human milk fortifiers
 - Casein hydrolysate
 - Whey hydrolysate
- Human milk-based fortifiers
- Human milk cream
 - 25% fat, 2.5 kcal/mL

Comparison of 3 Fortifiers

Nutrient	Nutrient Intake Guidelines	Acidified Liquid Human Milk Fortifier (HMF 1)	Human Milk Fortifier Extensively Hydrolyzed Protein Concentrated Liquid (HMF 2)	Human Milk Fortifier (HMF 3)
(Amount in parenthes	sis is what is provided v	vith goal feeds of 150 n	nl/kg/day. Compare to r	ecommended levels)
Kcal/oz.	115-130 kcal/kg	24	24	24
Protein, g/100 calories	4-4.5 g/kg*	4 *(4.8)	3.58 **(4)	2.8*** (3.4)
Calcium, mg/100 calories	120-200 mg/kg	145 (174)	152 (182)	150 (180)
Phosphorus, mg/100 calories	60-140 mg/kg	80 (96)	85 (102)	78 (94)
Iron, mg/100 calories	4-6 mg/kg	1.9 (2.3)	0.6 (0.7)	0.2 (0.3)
Vitamin D, IU/100 calories	800-1000 IU/day	210 (126-453)	150 (90-270)	34 (20-61)
mOsm/kg H2O	450	326	450	N/A

^{*}Assumes 1.6 g/100 calories

HMF=human milk fortifier.

Amy Gates, RD, CSP, LD and Jatinder Bhatia

^{**}Assumes 2.1 g/100 mL

^{***}Assumes 2.1 g/100 mL

Calories and Protein Provided by LHMFs

	Human Milk, Mature/Term	Preterm Human Milk, <29 weeks EGA	Donor Human Milk
Calories/ounce	19-21	20-26	15-20
LHMF 1, 4 vials + 100 mL	23-25	24-29	19-24
LHMF 2, 4 packets + 100 mL	23-25	24-29	19-24
LHMF 3, 20 mL + 100 mL	23-25	24-29	19-24
Protein, g/100 mL	0.9-1.5	2.2-3.3	0.8-1.4
LHMF 1, 4 vials + 100 mL	3.1-3.7	4.4-5.5	3-3.6
LHMF 2, 4 packets + 100 mL	2.9-3.5	4.2-5.3	2.8-3.4
LHMF 3, 20 mL + 100 mL	2.1-2.7	3.4	2-2.6

LHMF=liquid human milk fortifier.

Amy Gates, RD, CSP, LD and Jatinder Bhatia, 2016

Protein Intake, g/kg/d with fortification

Arslanoglu, Moro and Ziegler, J Perinatol 2009

Growth

- Premature infants fed fortified human milk experience better weight and length gain than those fed unfortified human milk
- No differences in long-term growth parameters
- However, infants fed fortified human milk [MOM or donor] receive less protein than assumed, grow slower

Schanler at al., 1999; Kuschel, Harding 2004; Schanler and Abrams 1995; Lucas et al., 1996; Miller et al., 2012; Arslanoglu et al., 2009; Bier et al., 2002; Carlson and Ziegler 1998., 2010

Calcium and Phosphorus

- Content in human milk is insufficient to achieve intrauterine accretion rates or normal bone mineralization
- Additional calcium and phosphorus is recommended after enteral feeds are established
- Impossible to meet requirements on parenteral nutrition

Calcium and Phosphate in Human Milk

Growth

- Better nutrient retention, increased bone mineralization
- Use of fortified milk approaches the net nutrient intrauterine rates of accretion
- Prevents a decrease in linear growth

Review: Multicomponent fortified human milk for promoting growth in preterm infants

Comparison: 1 Multicomponent fortification vs control (all trials)

Outcome: 13 Whole body bone mineral content (g)

Study or subgroup	Treatment N	M ean (SD)	Control N	Mean(SD)	Mean D IV,Fixed	ifference ,95% CI	Weight	Mean Difference IV,Fixed,95% CI
Faerk 2000	36	46.6 (9.9)	40	45.7 (8.2)	_	-	64.3 %	0.90 [-3.21, 5.01]
Wauben 1998	12	58 (6)	13	55 (8)	-	•	35.7 %	3.00 [-2.52, 8.52]
Total (95% CI) Heterogeneity: Chi ² = (Test for overall effect: I Test for subgroup diffe	Z = 0.98 (P = 0.3)	3)	53			•	100.0 %	165 [-165, 4.95]
				-10 Favours unsuppl.	-5 0	5 Favours fo	10 ortifier	

Greer, McCormick 1988; Schanler, Abrams 1995; Schanler, Garza, Smith 1985; Horsman et al., 1989; Schanler, Garza 1988; Abrams et al., 1989

Figure 3. Forest plot of comparison: I Fortified breast milk versus unfortified breast milk, outcome: I.I Weight gain (g/kg/d).

Test for subdroup differences. Crif = 3.04, di = 2 (P = 0.22), P = 34.29

Brown et al., Cochrane Database Syst Rev, DOI:10.1002/14651858, 2016

Figure 4. Forest plot of comparison: I Fortified breast milk versus unfortified breast milk, outcome: 1.2 Length gain (cm/wk).

Test for subgroup differences: $Chi^2 = 4.72$, df = 2 (P = 0.09), $I^2 = 57.6\%$

Brown et al., Cochrane Database Syst Rev DOI:10.1002/14651858, 2016

Figure 5. Forest plot of comparison: I Fortified breast milk versus unfortified breast milk, outcome: 1.3 Head growth (cm/wk).

Test for subdroup differences. Cff = 0.74, df = 2 (F = 0.05), f = 0.9

Brown et al., Cochrane Database Syst Rev DOI:10.1002/14651858, 2016

Multi-nutrient fortification of Human Milk

Outcomes	Risk with fortified breast milk	Relative effect	N	Quality of Evidence [GRADE]
g/kg/d	1.81 g/kg/d more [1.23-2.4]	•	635	Low
L, cm/wk	0.12 cm/wk, [0.07-0.17]	-	555	Low
HC, cm/wk	0.08 cm/wk, [0.04-0.12]	-	555	Moderate
MDI @ 18 m	2.2 [-3.35- +7.75]	•	245	Moderate
PDI @ 18 m	2.4 [-1.9- +6.7]	•	245	Moderate
NEC	40/1000 [19-82]	RR 1.57 [0.76- 3.23]	882	Low

Brown et al, Cochrane Database of systematic reviews, DOI:10.1002/14651858.CD000343.pub3, 2016

Individualized Fortification and Fortifiers

Fig. 1. Preterm human milk (HM) protein (g) achieved with four different fortifier strategies* when fed at 150 mL and compared to estimated goals. Low P □; Expected P □; Expected P □; High P □. *Fortifier strategies: PTF: Preterm formula (Similar Special Care 30[®], Abbott Nutrition, Columbus, OH); AC-LF: Acidified liquid fortifier (Mead Johnson Nutritionals, Evansville, IN); HMF +4; Prolacta Bioscience (Monrovia, CA); Powder: Enfamil Human Milk Fortifier (Mead Johnson Nutritionals, Evansville, IN).

Radmacher, Lewis, Adamkin J Neonatal Perinatal Medicine 6:319-323, 2013

Protein, Carbohydrate, fat and energy after target fortification

	ESPGHAN	ВМ	FIXED + BM	Target
Protein, g/dL	2.7-3.0	1.2 <u>+</u> 0.3	2.3 <u>+</u> 0.3	2.9 <u>+</u> 0.3
Carb, g/dL	7.7-8.8	7.3 <u>+</u> 1.1	7.7 <u>+</u> 1.1	8.6 <u>+</u> 1.2
Fat, g/dL	3.2-4.4	3.7 <u>+</u> 0.8	4.7 <u>+</u> 0.8	4.8 <u>+</u> 0.8
Energy, kcal/dL	73-90	67 <u>+</u> 9	82 <u>+</u> 9	89 <u>+</u> 8

Day-to-day variations in macronutrient intake would differ if breast milk is not analyzed daily

76/210 milk batches with fixed fortification required extra fortification with fat Minimum 2 days a week need to be analyzed

adapted from Rochow et al., Nutrients 2015, 7:2297-2310

Human Milk Cream vs Standard Fortification

- Prospective, noninferiority, randomized, unblinded study
- 750-1250g, n=78
- Control group: mother's own milk or donor HM fortified with human milk fortifier
- Cream group: as above + cream if HM < 20 kcal/oz
- Cream supplement is 25% lipids, 2.5 kcal/mL
- Assumption that HM was 20 kcal/oz

Human Milk Cream

	Control	Cream
g/kg/d	12.4 [3.9]*	14.0 [2.5]
L, cm/week	0.83 [0.41]*	1.03 [0.33]
RTBW g/kg/d	13.7 [4.0]*	15.7 [2.5]

Exclusive Human Milk Fortification

- Preterm infants <37 weeks gestation [27.6 ± 2.0]
- BW <1250g [913 <u>+</u> 182]
- Exclusive human milk-based diet
- Achievement of full feeds by 4 weeks of age
- Mother's own milk supplemented with pasteurized donor milk [HMBA]
- Fortification began at 60 mL/kg/d [HMF60] with an additional 4 kcal/30 mL
- Additional 6kcal/30 mL at 100-120 mL/kg/d
- If weight gain less than 15g/kg/d within a week, 8kcal/30 mL fortification
- Assumed HM to be 0.67kcal/g, 0.9g/dL protein

Human Milk Cream and Exclusive Human Milk-Based Diet

Hair et al., J Pediatr 2014;165:915-920

Exclusive Human Milk Fortification

^{*} Sullivan et al; J Pediatr 2010

Exclusive Human Milk Fortification

- A more rapid fortification strategy [n=104]
- Exact intakes assumed as MOM + donor milk + fortifier was given
- SGA at birth 21%
- SGA at DC 43%

Protein Recommendations vs Estimated Intake: Donor and MOM

Protein intake estimation based on manufacturer's estimations

Energy Recommendations vs Estimated Intake

Return to Birth Weight, Day of Life

-- 1.0 to -1.99 At risk-2 to -2.99 Moderate<-3 Severe

Increased enteral protein intake in human milk-fed preterm infants

- <32 weeks gestation</p>
- <1500g
- Enteral intake of at least 100 mL/kg/d by day 7
- Randomized 2:1:1
 - Lower protein [standard fortification, 5g/100 mL, FM85, Nestle]
 - Higher-protein
 - Higher protein supplementation using an investigational multicomponent fortifier
 - Individually adjusted fortification on top of standard fortification

Methods [continued]

- Lower protein: overall supply 3.5g/kg/d, assuming 1.3 g/100 mL in HM and fed at 150 mL/kg/d
- Higher protein aimed at 4.5g/kg/d
- Investigational fortifier: 1.8g bovine protein/5g fortifier [10.01.DE.INF;
 Nestle Nutrition]
- All three groups had fixed dose fortification of 2.5g/100 mL [100-149 mL/kg/d] and 5g/100 mL [150 mL/kg/d and thereafter]
- Group 2b: bovine protein added according to weight as well as MCT

Results I

P: birth to end of intervention; P1: randomization to day 28

Results II

Plots for data points in time are separated only to enhance clarity of data presentation. Each data point represents the median value; error bars, interquartile range. Study interventions were continued for a median (interquartile range) of 41 (30-57) days and until definite discharge planning.

Weight gain velocity of preterm infants with the reference fetus and infant

Summary of Fortification

- Adjustable fortification using BUN and growth appears to be a safe and suitable strategy
- When milk analyzers are made available [US], target fortification may be practiced
- Bedside analyzers currently in use over estimate human milk protein content by ~17% [Ziegler 2014]
- Day to day variation in human milk composition makes target fortification a labor intensive task
- More attention needs to be paid when using donor human milk

Feeding Premature and LBW Infants

- Balance the risk of under and over feeding particularly LBW infants who are small for gestational age
- Global epidemic of metabolic syndrome especially in countries where growth restriction rates are high
- For premature infants
 - Early aggressive parenteral nutrition
 - Early trophic feeds, colostrum swabbing
 - Human milk feeds with appropriate fortification
 - Monitor weight, length, head circumference
 - Accepted goal is to achieve postnatal growth similar to that of a normal fetus

Summary

- Nutrition in premature and LBW infants is a continuum from birth through discharge and after
- Particular attention is needed during parenteral nutrition, human milk feedings
- Growth restriction still a problem: Nutrition or predisposition?
- Fortification strategies need to be improved
- Vitamin D and Iron supplementation
- Current recommendations need to be followed as most of the deficiency states are preventable
- ONE SIZE DOES NOT FIT ALL!!

39th Annual

Neonatology: The Sick Newborn

Including NAS, PICC Line, and Pediatric Neonatal Vascular **Ultrasound Courses**

September 15 - 17, 2017

Presented by Medical College of Georgia at Augusta University Division of Professional and Community Education

Kiawah Island, South Carolina

