CEREBRAL OXIMETRY IN INFANTS WITH HIE

DAPHNA YASOVA BARBEAU, MD

FN3 MEETING 2018
OBJECTIVES

1. Understand how cerebral oximetry works
2. Understand how cerebral oximetry may guide intervention
3. Learn that cerebral oximetry trends may have prognostic value
WHAT IS CEREBRAL OXIMETRY?

• Cerebral oximetry is a non-invasive tool based on near-infrared spectroscopy (NIRS) that can monitor the regional hemoglobin oxygen saturation (rScO2) of the frontal cortex.

• It provides continuous information about brain oxygenation and it provides a measurement of the brain as a sentinel organ indexing overall organ perfusion and injury.
Cerebral & Somatic rSO$_2$: A Real-time Guide to Perfusion and Interventions

- Left and right peri-renal NIRS
- Left and right cerebral NIRS
HOW DOES IT WORK?

• An emitter sends light of the near-infrared spectrum (wavelength of 700-1100nm) through cerebral tissue in a semi-curved shape to a detector, approximately 2–3 cm in depth.

• Differences in NIR light absorption are detected by the sensor and the ratio between O_2Hb and HHb is expressed as the rScO_2 or tissue oxygenation index (TOI), depending on the manufacturer of the NIRS device.
CEREBRAL OXIMETRY VALUES

• Felt to be consistent with a mixed venous measurement.
• Good correlation with jugular venous oxygen saturation.
• \(r\text{SCO}_2 \)/ systemic arterial oxygen saturation = cerebral oxygen utilization
• \(r\text{ScO}_2 \) is between approximately 40 and 56% directly after birth
 • increases up to 78% in the first 2 days after birth
 • stabilizes during 3–6 weeks after birth with values between 55 and 85%
• Trend is more useful than single absolute value
MODIFIERS OF CEREBRAL OXYGENATION

• Ventilation impacts cerebral circulation
 • High mean airway pressures can reduce oxygen saturation

• pCO2: hypercapnia induces cerebral vasodilation and hypocapnia induces vasoconstriction
 • Increased pCO2 increases oxygen saturation and decreases oxygen extraction

• SGA infants: much higher rScO$_2$ in first few postnatal days
 • Likely a function of intra-uterine preservation of brain blood flow
MODIFIERS OF CEREBRAL OXYGENATION

• Hypotension: true hypotension will affect rScO$_2$
 • Consider permissive hypotension unless cerebral saturation affected

• Significant PDA: shunting away from the brain can have a profound effect on rScO2
 • rScO2 rarely used as a marker of PDA significance

• Blood transfusions: anemic infants who undergo transfusion have resultant increase in rScO2

• Dysfunction cerebral autoregulation: RDS, surgery, high concentrations of pressors
 • Impaired autoregulation linked to poor ND outcomes.
CEREBRAL OXIMETRY IN HIE

• Infants with HIE have increased rScO2 and decreased cFOE during days following asphyxia.
 • Cerebral hyperoxygenation likely a result of decreased metabolism leading to low oxygen utilization, impaired cerebral autoregulation despite hyperperfusion after injury.
 • Higher rScO2 have correlated with adverse outcomes at 2 years (both with and without TH)
CAN CEREBRAL OXIMETRY BE OF PROGNOSTIC VALUE?

• Retrospective review, N=38 neonates with HIE with rScO2 data during cooling between 2013-2016 (total N of babies cooled during that time: 62).

• data: continuous vEEG, CO values throughout cooling, post rewarming MRI

• Hypotheses:
 • Persistently abnormal vEEG tracings would correlate with severe injury.
 • Higher rScO2 during cooling will correlate with greater severity of the hypoxic-ischemic injury as seen on brain MRI.
 • Cerebral oximetry values and vEEG results can be combined to construct an injury prediction model.
VEEG PATTERNS

• Continuous:
 normal continuity, or amount of uninterrupted activity, for age with only discontinuous periods during quiet sleep.

• Discontinuous:
 at least one hour of burst activity (with some normal features) separated by low voltage intervals with no discernible activity and is not explained by tracé alternant (quiet sleep)

• Maximal suppression:
 No discernible background activity for at least one hour
 OR seizure activity on a maximally depressed background
EEG Background Pattern

No/Mild Injury

Moderate Injury

Severe Injury

% of patients

Hours of Life

Maximal suppression
Discontinuous voltage
Continuous voltage

*p<0.05
Electrographic Seizure Activity

% of Patients

* p<0.05

Hours of Life

0-12 12-24 24-36 36-48 48-60 60-72 72-96

Severe Injury
Moderate Injury
No/Mild Injury
Cerebral Oxygenation Saturations

Mean Cerebral Saturation

Hours of Life

* p<0.05

Severe Injury
Moderate Injury
No/Mild Injury

* indicates significant difference.
No SWC

<table>
<thead>
<tr>
<th></th>
<th>0-12 hr</th>
<th>12-24 hr</th>
<th>24-36 hr</th>
<th>36-48 hr</th>
<th>48-60 hr</th>
<th>60-72 hr</th>
<th>72-96 hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>100</td>
<td>88</td>
<td>100</td>
<td>100</td>
<td>75</td>
<td>75</td>
<td>71</td>
</tr>
<tr>
<td>Specificity</td>
<td>38</td>
<td>57</td>
<td>53</td>
<td>53</td>
<td>60</td>
<td>67</td>
<td>64</td>
</tr>
<tr>
<td>PPV</td>
<td>44</td>
<td>54</td>
<td>50</td>
<td>53</td>
<td>50</td>
<td>55</td>
<td>50</td>
</tr>
<tr>
<td>NPV</td>
<td>100</td>
<td>89</td>
<td>100</td>
<td>100</td>
<td>82</td>
<td>83</td>
<td>82</td>
</tr>
</tbody>
</table>

Maximal Suppression

<table>
<thead>
<tr>
<th></th>
<th>0-12 hr</th>
<th>12-24 hr</th>
<th>24-36 hr</th>
<th>36-48 hr</th>
<th>48-60 hr</th>
<th>60-72 hr</th>
<th>72-96 hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>75</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>14</td>
</tr>
<tr>
<td>Specificity</td>
<td>100</td>
<td>86</td>
<td>87</td>
<td>87</td>
<td>93</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>PPV</td>
<td>100</td>
<td>67</td>
<td>67</td>
<td>67</td>
<td>80</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>NPV</td>
<td>89</td>
<td>75</td>
<td>76</td>
<td>76</td>
<td>78</td>
<td>79</td>
<td>70</td>
</tr>
</tbody>
</table>

Seizures

<table>
<thead>
<tr>
<th></th>
<th>0-12 hr</th>
<th>12-24 hr</th>
<th>24-36 hr</th>
<th>36-48 hr</th>
<th>48-60 hr</th>
<th>60-72 hr</th>
<th>72-96 hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>25</td>
<td>88</td>
<td>29</td>
<td>63</td>
<td>38</td>
<td>25</td>
<td>43</td>
</tr>
<tr>
<td>Specificity</td>
<td>63</td>
<td>57</td>
<td>93</td>
<td>80</td>
<td>93</td>
<td>93</td>
<td>100</td>
</tr>
<tr>
<td>PPV</td>
<td>25</td>
<td>54</td>
<td>67</td>
<td>63</td>
<td>75</td>
<td>67</td>
<td>100</td>
</tr>
<tr>
<td>NPV</td>
<td>63</td>
<td>89</td>
<td>74</td>
<td>80</td>
<td>74</td>
<td>70</td>
<td>78</td>
</tr>
</tbody>
</table>
RECEIVER OPERATOR CURVES

Black line = model A (cerebral oximetry + seizures + SWC + vEEG background pattern)
Grey line = model B (cerebral oximetry only)
What is a prism, Dad?

A place for light waves that commit minor refractions.